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Abstract—Creutzfeldt–Jakob disease (CJD) is a rare, trans-
missible and fatal prion disorder of brain. Typical electro-
encephalography (EEG) patterns, such as the periodic sharp
wave complexes (PSWCs), do not clearly emerge until the
middle stage of CJD. To reduce transmission risks and avoid
unnecessary treatments, the recognition of the hidden
PSWCs forerunners from the contaminated EEG signals in
the early stage is imperative. In this study, independent
component analysis (ICA) was employed on the raw EEG
signals recorded at the first admissions of five patients to
segregate the co-occurrence of multiple disease-related fea-
tures, which were difficult to be detected from the smeared
EEG. Clear CJD-related waveforms, i.e., frontal intermittent
rhythmical delta activity (FIRDA), fore PSWCs (triphasic
waves) and periodic lateralized epileptiform discharges
(PLEDs), have been successfully and simultaneously resolved
from all patients. The ICA results elucidate the concurrent
appearance of FIRDA and PLEDs or triphasic waves within
the same EEG epoch, which has not been reported in the
previous literature. Results show that ICA is an objective and
effective means to extract the disease-related patterns for
facilitating the early diagnosis of CJD.

Keywords—Frontal intermittent rhythmical delta activity

(FIRDA), Periodic sharp wave complexes (PSWCs), Periodic

lateralized epileptiform discharges (PLEDs).

INTRODUCTION

Creutzfeldt–Jakob disease (CJD) is a rare prion
disorder of brain, with an approximated incidence of
0.5–1 case per million persons per year. The subtypes
of human prion diseases can be familial, sporadic, or

acquired, which are characterized by combination of
clinical findings such as duration of disease, EEG
changes, age at onset and predominant neurological
signs. Sporadic CJD (sCJD) is the most common
subtype of CJD that usually develops in the 5th to 7th
decade of life, with a mean age of onset of 62 years old
(median 65). Survival times ranging from 1 to
58 months have been reported.24 The clinical presen-
tations, such as memory loss, visual disturbances,
involuntary movements, myoclonus, dementia, and
coma can be observed subsequently from early to the
terminal stage of the disease. Since CJD is a rapidly
progressive, uniformly fatal and transmissible spongi-
form encephalopathy, detection of the CJD symptom
in the early stage is crucial to avoid the fatal trans-
mission.

Electroencephalography (EEG), cerebral magnetic
resonance imaging (MRI), and cerebrospinal fluid
analysis (CSF analysis) are currently the most common
diagnostic means of CJD. To evaluate these tech-
niques, Collins et al. investigated the influence of sev-
eral clinical parameters, such as prion protein gene
codon 129 polymorphism, molecular sub-type, age at
disease onset, and illness duration, on the diagnostic
sensitivity to EEG, cerebral MRI, and the CSF anal-
ysis. They reported that the CSF analysis had the
highest sensitivity for early diagnosis since the 14-3-3
protein could be detected from the CSF after the dis-
ease had onset.4 However, Geschwind et al. concluded
that the sensitivity of CSF analysis in their study was
only 53% and advised that it was risky to exclude the
diagnosis of CJD in the case of negative CSF results.7

Besides, the use of CSF 14-3-3 analysis, regardless of
methods, is problematic since universally accepted
standards are not available for performing such tests.

Address correspondence to Yu-Te Wu, Department of Biomed-

ical Imaging and Radiological Sciences, National Yang-Ming Uni-

versity, No. 155, Section 2, Li-Nong Street, Bei-Tou, Taipei 112,

Taiwan, ROC. Electronic mail: ytwu@ym.edu.tw

Annals of Biomedical Engineering, Vol. 35, No. 12, December 2007 (� 2007) pp. 2168–2179

DOI: 10.1007/s10439-007-9381-z

0090-6964/07/1200-2168/0 � 2007 Biomedical Engineering Society

2168



Magnetic resonance brain imaging is another devel-
oping tool for detecting CJD. The study conducted by
the Schröter et al. revealed T2-weighted MRI alter-
nations in 109 (67%) out of 162 sCJD patients,20

whereas the sensitivity of abnormal T2-weighted or
diffusion-weighted MRI reported by Collins et al. was
43%.4 Accordingly, efforts to develop more effective
techniques for the aid to early diagnosis are of poten-
tially great importance.

EEG is one of the major techniques used to diag-
nose CJD and has been included in the World Heath
Organization diagnostic classification criteria.24 In
general, EEG patterns of sCJD exhibit longitudinal
changes along with the course of the disease, ranging
from frontal intermittent rhythmical delta activity
(FIRDA), i.e., slow waves with 1–3 Hz, in the early
stage to periodic lateralized epileptiform discharges
(PLEDs) or prototypical periodic sharp wave com-
plexes (PSWCs) in the middle and late stages.1,3,6,25

The temporal waveforms and the spatial dominances
of FIRDA, PLEDs, and PSWCs are presented in the
Figs. 1a and 1b, respectively. The morphology of
PLEDs shows complexes, which consist of a bi- or
multiphasic spike or sharp wave and may include a
slow wave.5 The PSWCs mainly comprise simple sharp
waves, i.e., monophasic, biphasic, and triphasic waves,
with a typical duration of 200–600 ms, although
complexes with mixed spikes, polyspikes, and slower
waves may appear from times to times.5,24,25 The peak-
to-peak intervals of PSWCs are usually between 0.5
and 2 s. The major difference between the PLEDs and
PSWCs is their topographical dominances. The former
is more hemispherically lateralized while the latter is
more focal in the early stage and becomes diffusive
after the middle stage. Since the PSWCs are not evi-
dent until the middle or late stage, detection of the

PSWCs predecessors, such as FIRDA, PLEDs, and
focal tirphasic waves, hidden in the smeared EEG
signals is critical for the early diagnosis.

EEG recordings are overlapping potentials con-
tributed from individual neurons inside the brain as
well as from the artifacts produced outside the brain.5

Figures 2b–4b illustrate parts of typical segments of
raw EEG signals recorded from the first admissions of
patient 1 (the early stage of CJD). The shaded areas
show that the brain activities are severely contami-
nated by significantly large eye-movement potentials
and environmental noises, which makes the visual
inspection of FIRDA, PLEDs, and tirphasic waves in
the early stage of CJD a difficult task.

To recover the CJD-related patterns from EEG
data, we employed the independent component anal-
ysis (ICA)11,23 in this study. ICA has been successfully
applied to remove non-physiological artifacts from
EEG data,14,15 to segregate Rolandic beta rhythm
from magnetoencephalographic (MEG) measurements
of the right index finger lifting,17 to extract the task-
related features from the motor imagery EEG and the
flash visual evoked EEG in the studies of the brain
computer interface,10,18 to analyze the interactions
during temporal lobe seizures in stereotactic depth
EEG,22 to separate generalized spike-and-wave dis-
charges into the primary and secondary bilateral
synchrony,13 and to segment spatiotemporal hemody-
namics from perfusion magnetic resonance brain
images.16

PATIENTS AND EEG RECORDINGS

Five patients (all male) with sCJD, aged 73, 74, 85,
52, and 80 years old were recruited in this study (for

FIGURE 1. (a) Temporal waveforms of FIRDA, PLEDs, and PSWCs. The PLEDs mainly consist of a bi- or multiphasic spike or
sharp wave. The PSWCs mainly comprise simple sharp waves, i.e., monophasic, biphasic, and triphasic waves, with a typical
duration of 200–600 ms and the peak-to-peak intervals are usually between 0.5 and 2 s. (b) Spatial dominances of FIRDA, PLEDs,
and PSWCs. The FIRDA is usually observed in the frontal areas, the PLEDs are hemispherically lateralized, and the PSWCs are
usually more focal in early stage and become diffusive after middle stage. (c) The whole scalp of each subject was covered with 17
EEG electrodes placed onto anatomical locations according to the international 10–20 system, where Fp, F, C, P, O, and T
represent the abbreviations of frontal polar, frontal, central, parietal, occipital, and temporal, respectively.

BSS of Concurrent Disease-Related Patterns from EEG in CJD 2169



details, see Table 1). All of them met the criteria of
probable CJD defined by WHO, were examined by
board-certified neurologists, and underwent extensive
diagnostic workups, including clinical, neurophysio-
logical, neuroradiological examinations, and the CSF
analysis. Disease onset was determined retrospectively
based on history and clinical presentations as reported
by the patients themselves and their relatives. The
onset times of patient 1 to patient 5 were 6, 9, 4, 5,
3 weeks, respectively, before the first EEG recording.
The EEGs were acquired using a 19-channel Nicolet
EEG system (digitized at 250 Hz) with Ag/AgCl sur-
face electrodes, which were placed based on the con-
figuration of the international 10–20 system (Fig. 1c).
We used the referential montage, rather than the
bipolar or standard EEG, because the EEG signals can
be expressed as X = AS-Ref so that the mixing matrix
can be obtained directly from FastICA (the Ref term

was eliminated in the zero-mean pre-processing of
FastICA). The use of bipolar montage would make the
recovery of the mixing matrix much more difficult
since the bipolar EEG signals are formulated as
X = (A1 - A2)S with the additional constrain
A1(i,j) = A2(i,j + 1). Five-minute EEG recording was
clipped for each subject, which was bandpass filtered
between 0.5 and 10 Hz prior to the ICA process. In
this study, the infinite impulse response (IIR) digital
filter was designed based on the Butterworth magni-
tude response

PLðXÞj j ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þX2L
p ; 1 � L ð1Þ

where X was the analog frequency and L was the
order of the normalized low-pass analog filter.21

Furthermore, the associated s-plane poles were given
by

FIGURE 2. The first selected EEG segment and ICA results from patient 1. Once W and S were resolved by ICA (Eq. 5), rows of S
representing the temporal waveforms of independent sources were displayed in (d), and each column of W-1 denoting the relative
(spatial) weightings of each sources was depicted as a topography map in (e). (a) A 15-s time window (2–17 s) within 5-min data
used to display results in (b) and (d). (b) The illustration of a 15-s segment where signals in the shaded areas were severely
contaminated by large eye movements and environmental noises. (c) The topographical maps generated at four peak time points
p1, p2, p3 and p4 (vertical lines in b) of four waves in IC3 at 3.3, 5.1, 9.6, and 10.9 s. (d) The 17 decomposed ICs show that diseased-
related pattern was PLEDs (IC3) and the artifacts were eye blinks (IC2), eye movements (IC8), and noise (IC11). (e) The corre-
sponding spatial maps of IC2, IC3, IC8, and IC11.
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sk ¼ exp
jð2kþ L� 1Þp

2L

� �

; 1 � k � 2L: ð2Þ

The bandpass filtering of the EEG was performed
by the 6th-order high pass filter followed by the 16th-
order low pass filter, which were implemented using
MATLAB build-in functions.

Figure 2b displays a 15-s waveform of the 17-
channel EEG (excluding two referential electrodes,
Ref1 and Ref2) from one patient. We selected several
time points at which the negative peaks or positive
peaks (Figs. 2b–4b) in conjunction with the corre-
sponding topographic maps (Figs. 2c–4c) which may
possess some physiological meanings. However, due to
the mixture of source signals, such as disease-related
waveforms, environmental noises, and eye-movement
artifacts, the disease-related compartments can be
barely discerned either from the waveforms or from the

topographic maps. It should be noted that the 15-s
time windows showed in the Figs. 2–4 were selected
merely to demonstrate such obscure mixture in the raw
EEGs (Figs. 2b–4b). In our implementation, ICA was
applied to the whole 5-min recording of each patient
and the selection of the interval of interest prior to ICA
calculation was not needed.

METHOD

Independent Component Analysis and Extraction
of CJD-Related Components

Independent component analysis is a statistical
method that has been developed to extract independent
signals from a linear mixture of sources. Let X

m�n
denote

the measured data with m and n being the number of
channels and the number of data samples, respectively.
In the context of ICA, X is assumed to be linear

FIGURE 3. The second selected EEG segment and ICA results from patient 1. (a) The 15-s time window (152–167 s) used to
display results in (b) and (d). (b) The illustration of a 15-s segment where signals in the shaded areas were severely contaminated
by large eye movements and environmental noises. (c) The topographical maps generated at four peak time points p1, p2, p3 and
p4 (vertical lines in b) of four waves in IC4 at 154, 156.6, 159.9, and 162.9 s. (d) The 17 decomposed ICs show that diseased-related
pattern was focal triphasic waves (IC4) and the artifacts were eye blinks (IC2), eye movements (IC8) and noise (IC15). (e) The
corresponding spatial maps of IC2, IC4, IC8, and IC15.
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combinations of k unknown independent components
and can be expressed as

X
m�n
¼ A

m�k
� S
k�n
; ð3Þ

where S contains k independent sources with the same
data length as X, and A is a constant mixing matrix
with the kth column representing the spatial weights
corresponding to the kth component of S. Given the

measurement X, ICA techniques attempt to recover
both the mixing matrix A and the independent sources
S. In the present study, all calculations were performed
using the FastICA algorithm.11,23 The FastICA tech-
nique first removes means of the row vectors in the X

matrix and then uses a whitening procedure, imple-
mented by Principal Components Analysis,11 to
transform the covariance matrix of the zero-mean data
into an identity matrix. In the next step, FastICA

FIGURE 4. The third selected EEG segment and ICA results from patient 1. (a) The 15-second time window (201–216 s) used to
display results in (b) and (d). (b) The illustration of a 15-s segment where signals in the shaded areas were severely contaminated
by large eye movements and environmental noises. (c) The topographical maps generated at four peak time points p1, p2, p3 and
p4 (vertical lines in b) of four waves in IC3 at 203.9, 205.7, 210.4, and 211.1 s. (d) The 17 decomposed ICs show that diseased-related
patterns were PLEDs (IC3) and epileptiforms (IC5) and the artifacts were eye movements (IC8) and noise (IC15). (e) The corre-
sponding spatial maps of IC3, IC5, IC8, and IC15.

TABLE 1. Clinical data of probable CJD patients.

Patient Gender

Age at

onset

Disease

onset Clinical presentation Original EEG report

1 M 73 y/o 6 Memory impairment PLED, DBS 7 Hz

2 M 74 y/o 9 Memory impairment FIRDA, DBS 7–8 Hz

3 M 85 y/o 4 Memory impairment PLED, DBS 6–7 Hz

4 M 52 y/o 5 Memory impairment DBS 4–5 Hz

5 M 80 y/o 3 Memory impairment Periodic epileptiform

Disease onset time: weeks before the first admission. DBS: diffuse background slowing.
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searches for a rotation matrix to further separate the
whitened data into a set of components, which are as
mutually independent as possible. In combination with
previous whitening process, the matrix X is trans-
formed into a matrix S via an un-mixing matrixW, i.e.,

S
k�n
¼ W

k�m
X

m�n
ð4Þ

so that rows of S are mutually independent. The fixed-
point method for solving W ¼ (wi,:::,wk)

T in the Fas-
tICA, where k is the number of independent sources,
can be summarized as follows11:

For i = 1: k,

1. Randomly choose a weighting vector wi.
2. Let wþi ¼ EfxgðwT

i xÞg � Efg0ðwT
i xÞgwi, where

gðuÞ ¼ tanhðc � uÞ; 1 � c � 2
3. Let wi ¼ wþi / wþi

�

�

�

�

4. Go back to step 2 if not converge.
5. Decorrelation by Gram–Schmidt-like scheme,

Let wi ¼ wi �
Pi�1

j¼1 w
T
i wjwj

6. Renormalize wi, Let wi ¼ wi= wik k
end

Since EEG can be considered as a linear combina-
tion of electric brain activities,5 we employed ICA to
extract the disease-related components from the EEG
of five patients. In this study, each pre-processed epoch
was arranged across m channels (m = 17) and n
sampled points (n = 250*300) into a m · n matrix X.
The ith row contains the observed signal from the ith
EEG channel, and the jth column vector contains the
observed samples at the jth time point across all
channels. FastICA was applied on each pre-processed
epoch to resolve the W and S. After estimating the un-
mixing matrix W, we can recover the temporal wave-
forms by applying the inverse matrix of W on both
sides of Eq. (4) to yield

X
m�n
¼W�1

m�k
� S
k�n
; ð5Þ

where W-1 is the best estimation of the mixing matrix
A in Eq. 3. In the cocktail-party problem, a popular
example of ICA model, the kth row of S represents the
voice from the kth speaker, and the element of mixing
matrix A in the mth column and kth row, i.e., amk,
represents the weighting of the voice from the kth
speaker recorded in the mth microphone. In other
words, the kth column of A represents the weightings
of the voice of kth speaker at each microphone. In this
study, S represents the time sequences of activation
sources, i.e., temporal waveforms of ICs in Figs. 2–5,
and A stands for the weighting of sources recorded
from electrodes. Since W is the estimated un-mixing

matrix, each column in W-1 represents a spatial map
describing the weightings of the corresponding tem-
poral component at each EEG channel. These spatial
maps will hereinafter be referred to as IC spatial maps.
The validation of applying ICA to decompose EEG
data has been addressed in the pervious stud-
ies.10,13–18,22,23,26 In this study, we have also varied the
data length, namely 1-, 2-, 3-, 4-, and 5-min epoch of
data, to evaluate the performance of ICA and applied
PCA on the same data sets for comparing their results
on the feature extraction.

Bayesian Information Criterion (BIC)

We have adopted the BIC,2,9,19 which was based on
the estimation of posterior probability PðXjA; kÞ given
the number of sources k and the observed data X, to
estimate the number of sources. The posterior proba-
bility was the function of A given by

PðXjA; kÞ ¼
Y

k

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pKkj j
p

1

detðAÞj j

� �T

� exp � 1

2

X

t;t0
Ŝk;tðK�1k Þt;t0 Ŝk;t0

 !

; ð6Þ

where the notation Ŝk;t was the sources estimated from
A and X, Ŝk;t ¼

P

l ðA�1Þk;lXl;t, Kk was the covariance
matrix of sources and t was the time point. In theory,
the number of sources that produced the maximal
posterior probability would be selected since the pre-
dicted model was best fit to the observed data.

RESULTS

Determination of the Number of Sources

The numbers of sources ranging from 2 to 17 (the
number of channels) were introduced to compute the
posterior probabilities and the results in Fig. 6 dem-
onstrated that values of posterior probabilities were
comparable when N was between 12 and 17. In fact,
the resultant CJD-related components were also com-
parable when N varied from 12 to 17. Instead of using
the BIC for determining the number of sources, we
simply used the number of channels as the number of
sources, as suggested by the previous studies.10,14–18,26

CJD-Related Feature Extraction

We have observed that the distinct disease-related
patterns were likely to occur in different time windows.
Three 15-s windows (Figs. 2a, 3a, and 4a) were selected
to illustrate the ICA results obtained from a 5-min EEG
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data. The resultant independent temporal waveforms
(patient 1, 73 y/o) were presented in Figs. 2d, 3d, and
4d, respectively, and the corresponding spatial maps
elucidating CJD-related characteristics or artifacts were
depicted in Figs. 2e, 3e, and 4e, respectively. The CJD-
related components shown in Figs. 2d, e, 3d, e, and 4d,
e are the PLEDs lateralized to the right hemisphere
(IC3), triphasic waves on the occipital lobe (IC4), and
the PLEDs (IC3) as well as the epileptiforms covering
the whole brain (IC5), respectively. The component IC2
was the artifact caused by eye blinks since the spikes
occurred intermittently with irregular shapes and large
weights exhibited in the prefrontal area of the corre-
sponding spatial map. Similarly, IC8 was identified as
an artifact due to left eye movements. The remaining
ICs may correspond to spontaneous brain activities
irrelevant to CJD or artifacts and were not taken into
account in the analysis.

Figure 5 summarizes the individual CJD-related
components from the other patients. Each panel shows
the selected temporal independent components and the
corresponding spatial maps for one patient. The ICA
results from patient 2 (74 y/o), display generalized
triphasic waves (IC1), PLEDs lateralized to the left
hemisphere (IC3), and slow waves at delta frequency
(shaded area of IC6) (Fig. 5a). In Fig. 5b, epilepti-
forms (IC6, IC7) and FIRDA (shaded area of IC8)
were resolved from patient 3 (85 y/o). Figure 5c shows
the prominent FIRDA over the left frontal-temporal
area (IC2) and the right frontal region (shaded area of
IC4), and epileptiforms on the right temporal-occipital
lobe (IC6) from patient 4 (52 y/o). Finally, Fig. 5(d)
displays that the positive periodic triphasic waves ap-
pear predominantly on the right occipital lobe (IC2),
the PLEDs on the right frontal-central area (IC7), and
the diffused delta waves (IC8) from patient 5 (80 y/o).

FIGURE 6. The numbers of sources estimated by using the Bayesian information criterion (BIC) from patient 1 to patient 5. Each
panel shows the estimated posterior probabilities (histograms) of a patient. The numbers of sources range from 2 to 17 (the
number of channels) were given for computing the posterior probabilities (Eq. 6). It is evident that all the estimated posterior
probabilities are comparable in each plot when the source numbers are between 12 and 17.

FIGURE 5. Summarized ICA results from patient 2 to patient 5. Each panel shows the selected ICs and corresponding spatial
maps for one patient. (a) The ICA results display generalized triphasic waves (IC1), PLEDs lateralized to the left hemisphere (IC3),
and slow waves at delta frequency (shaded area of IC6). (b) The ICA results show epileptiforms (IC6, IC7) and FIRDA (shaded area
of IC8). (c) The ICA results show the prominent FIRDA over left frontal-temporal area (IC2) and right frontal region (shaded area of
IC4), and epileptiforms on the right temporal-occipital lobe (IC6). (d) The ICA results show periodic triphasic waves on the right
occipital lobe (IC2), the PLEDs on the right frontal-central area (IC7), and the diffused delta waves (IC8).
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Figure 7 shows the results when the 1-, 2-, 3-, 4-, and
5-min epochs of data were analyzed by ICA. The bars
with different colors in the Figs. 7a–7e represent the
time periods during which features were resolved,
namely, the epileptiform, PLED, and triphasic waves.
It can be seen that the ICA results remained unchanged
under various data lengths where the same CJD-related
patterns repeatedly appeared. Specifically, the PLED
presents in the first 20 s within the first minute and in
the 17th–35th seconds in the 5th minute of the epoch

(see the yellow bars in the 1st and 5th windows in (a),
1st and 4th windows in (b), 1st and 2nd windows in (c),
1st and 2nd windows in (d), and in (e)). The epilepti-
form were detected within the 3rd window in (a), 2nd
and 3rd windows in (b), 2nd and 3rd windows in (c), 1st
and 2nd windows in (d), and in (e) (see orange bars).
Finally, the triphasic waves can be observed across
from the 2nd to the 5th windows in (a), which also
appeared in the 1st–4th windows in (b), 1st–2nd
windows in (c), 1st–2nd windows in (d), and in (e)

FIGURE 7. Performance of ICA when the 1-, 2-, 3-, 4-, and 5-min epochs of data were analyzed. The bars with different colors in the
panels (a) to (e) represent the time periods during which features were resolved, namely, the epileptiform, PLED, and triphasic
waves. It can be seen that the ICA results remained unchanged under various data lengths where the same CJD-related patterns
repeatedly appeared. Specifically, the PLED presents in the first 20 s within the 1st minute and in the 17th–35th seconds in the 5th
minute of the epoch (see the yellow bars in the 1st and 5th windows in (a), 1st and 4th windows in (b), 1st and 2nd windows in (c),
1st and 2nd windows in (d), and in (e)). The epileptiform were detected within the 3rd window in (a), 2nd and 3rd windows in (b), 2nd
and 3rd windows in (c), 1st and 2nd windows in (d), and in (e) (see orange bars). Finally, the triphasic waves can be observed
across from the 2nd to the 5th windows in (a), which also appeared in the 1st–4th windows in (b), 1st–2nd windows in (c), 1st–2nd
windows in (d), and in (e) (see green bars). It should be noted that not only the temporal features preserved the same waveforms
and durations, but also the three corresponding spatial maps remained resemble.
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(see green bars). It should be noted that not only the
temporal features preserved the same waveforms and
durations, but also the three corresponding spatial
maps remained resemble (see Fig. 7). Similar results
have been obtained from other patients (not shown).

Feature Extraction by PCA

It has been reported that the use of ICA under the
assumption of source independence can separate more
realistically neurophysiologic signals in comparison
with the principal component analysis (PCA).10,12

Since the EEG signals induced by eye blinking or
contaminated by electrical noise usually present far
larger variances than physiological signals, the
covariance-based PCA decomposing procedure is
inferior to ICA for resolving meaningful brain activi-
ties. As shown in the Fig. 8b where the same time
window in Fig. 4a was selected, the temporal wave-
forms of the first four principal components (eigen-
vectors corresponding to the first four largest
eigenvalues) merely exhibit the preservation of the
most power of the original signals. None of them ex-
tracted the evident eye-blinking artifacts or CJD-re-
lated features from the raw EEG as compared to the
ICA results in Fig. 4.

DISCUSSION

This study aims to extract the CJD-related wave-
forms in conjunction with the spatial dominances from
the EEG recordings for the early diagnosis of CJD.
Our results demonstrate that ICA is an effective tool
for distinguishing FIRDA, PLEDs and PSWCs from

EEG recordings in the early stage of CJD (Figs. 2d,
e–4d, e, and 5) with dominance in each corresponding
spatial map being revealed. In comparison with the
raw EEG data in the shaded areas in Figs. 2b–4b,
where the CJD-related waveforms were severely
smeared by the large potentials of eye movements,
three PLEDs, four triphasic waves, and two epilepti-
forms can be evidently recovered in the shaded areas of
IC3 in Fig. 2d, IC4 in Fig. 3d and IC5 in Fig. 4d,
respectively. In addition, it should be noted that any 5-
min IC waveform only corresponds to a single spatial
map and the predominant region for IC3, IC4, and IC5
are manifested in Figs. 2e, 3e, and 4e, respectively. On
the contrary, the topographical maps produced from
the peak times of the similar waveforms in the raw data
varied from one to another. To illustrate this, we
particularly chosen four peak times of the disease-
related IC waveforms and displayed the topographical
maps based on the raw EEG at these peak times. As
shown in the vertical lines in Figs. 2b or 2d, four peak
time points p1, p2, p3 and p4 of four waves in IC3 at
3.3, 5.1, 9.6 and 10.9 s were selected and the corre-
sponding topographical maps produced from the raw
data presented distinct patterns (Fig. 2c), which were
difficult to interpret for further analysis. Similar
phenomenon and difficulty can be seen in Figs. 3c
and 4c.

Another salient feature of ICA is that, even a CJD-
related wave hid at different time windows and ob-
scured across multiple channels, ICA is effective to
extract such waveforms from different channels into a
single independent component, as illustrated by IC3 in
Figs. 2d, e and Figs. 4d, e where repeated waves of
PLEDs were identified in IC3 which occurred during
2–17 and 201–216 s. Besides, muscular artifacts and

FIGURE 8. The selected EEG segment and PCA results within the same time window as in Fig. 4 from patient 1. (a) The 15-s time
window (201–216 s) is used to display results in (b). (b) The 17 decomposed PCs show that the temporal waveforms of the first four
principal components (eigenvectors corresponding to the first four largest eigenvalues) merely exhibit the preservation of the
most power of the original signals. (c) The corresponding spatial maps of PC1 to PC4. None of them extracted the evident eye-
blinking artifacts or CJD-related features from raw EEG as compared to the ICA results in Fig. 4.
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environmental noise have been isolated by ICA which
were in congruent with previous studies.14,15,23 The
intermittent high amplitude waves induced by eye
blinks with maximum over the prefrontal area were
presented within IC2 in Figs. 2d, e and 3d, e, large
irregular waves caused by eye movements on the left
frontal region were within IC8 in Figs. 2 and 3d, e, and
environmental noises exhibiting irregularly transient
waveforms in a single channel were within IC11 in
Fig. 2d, e, IC15 in Figs. 3 and 4d, e.

Most of the previous studies have reported that only
one CJD pattern appeared in each stage. The co-
occurrence of FIRDA and PLEDs or triphasic waves
from the same EEG data has not been explored. For
examples, either the FIRDA or FIRDA-like waveforms
could be found in the early stage of CJD inmost case,8,25

or the PLEDs appeared initially and were replaced by
PSWCs progressively in the middle or late stage.1,6 The
ICA results, nevertheless, illustrated that the FIRDA
and PLEDs, or FIRDA and epileptiforms, or FIRDA
and triphasic waves concurrently appeared in the same
EEG data for each patient. As shown in Table 2, the
PLEDs, epileptiforms, and triphasic waves from the 5-
min EEG signals of patient 1 can be respectively recov-
ered in IC3, IC5 and IC4, the FIRDA, PLEDs, and
triphasic waves in IC6 (shaded area in Fig. 5a), IC3
(stars in Fig. 5a) and IC1 (arrows in Fig. 5a) from pa-
tient 2, and in IC8 (shaded area in Fig. 5d), IC7 (stars in
Fig. 5d) and IC2 (arrows in Fig. 5d) from patient 5. In
addition, FIRDA can be seen in IC8 (shaded area in
Fig. 5b) and epileptiforms in IC6 and IC7 (arrows
in Fig. 5b) from patient 3, and FIRDA in IC2 and IC4
(shaded area in Fig. 5c) and epileptiforms (arrows in
Fig. 5c) in IC6 from patient 4. These findings suggest
that the EEG in the early stage of CJD is heterogeneous
and concurrent appearance of different CJD patterns
should be taken into account in the diagnosis.

It should be noted that only the PSWC had been
reported with a 85% specific to the late CJD, the
unaccompanied occurrence of each pattern, such as
FRIDA, epileptiform, PLED, and triphasic waves,
might been seen in other neurological disorders.
Therefore, the hypothesis that EEGs of the CJD

manifested the co-occurrence of multiple disease-
related features was further tested against the Alzhei-
mer’s disease (AD) group with five patients who were
all male and aged 85, 73, 45, 72, and 79 years old, i.e.,
age and gender matched with the CJD group. After
applying ICA on the AD group, we examined the
independent components to detect the disease-related
features. No co-occurrence of multiple disease-related
features were found in the AD group, except that two
ICs were detected to consist of FIRDA in patient 1 and
one IC consisted of the epileptiform in patient 4. Based
on the co-occurrence of multiple disease-related fea-
tures exhibited in both groups, the difference between
AD and CJD groups was statistically significant (Two-
sample Wilcoxon test, p<0.05). Accordingly, the
concurrent existence of multiple features presented in
the early EEG of CJD patients can be used as an as-
sistive tool for the early diagnosis of CJD.

The order of same CJD-related components may
vary from patient to patient since both the mixing
matrix A and source matrix S are unknown, which
allows the change of the order of rows in S. To see this,
we can substitute a permutation matrix P and its in-
verse into the model, X = AS, to give X = (AP-1)
(PS). The matrix AP-1 is a new unknown mixing ma-
trix to be solved by the FastICA algorithm11 and the
rows of PS are original sources but in different order
because each row or column in P consists of only one
nonzero element with value 1. It is much easier to
detect the CJD-related patterns from the unmixed
signals rather than from the obscured mixing signals as
illustrated in Figs. 2–4, although the same CJD-related
sources would occur at different channels among pa-
tients. In addition, we found that the ICs consisting of
larger spikes, such as irregular waveforms and bursts,
tended to be decomposed earlier from the mixing sig-
nals in the calculation of FastICA. All the CJD-related
features, i.e., sharp waves or epileptiform, have been
recognized from ICs lower than IC8.

It is noted that the matrix S has lower amplitude in
comparison with the matrix X. Such an amplitude
difference comes from the nature of the linear mixing
model and the algorithm of FastICA. Based on the
vector form of the model xj ¼ aj1s1 þ � � � þ ajisi þ � � � ;
it can be rewritten into the form xj ¼ aj1s1 þ � � � þ
ðajia�1ÞðasiÞ þ � � � ; where a is any arbitrarily nonzero
scalar. In other words, the solutions of mixing A and
source matrix S are not unique since any source si can
be multiplied by a nonzero scalar which can always be
cancelled by dividing the corresponding column of A
by the same scalar. In order to fix the magnitude of the
independent components, each source is restricted to
have unit variance in the FastICA calculation.11 As a
result, the resolved matrix S has lower amplitude than
the matrix X.

TABLE 2. The concurrent appearance of different CJD
waveforms in the same EEG data from each patient.

Patient FIRDA PLEDs Epileptiform

Triphasic

wave

1 (Figs. 2–4) IC3 IC5 IC4

2 (Fig. 5) IC6 IC3 IC1

3 (Fig. 5) IC8 IC6, IC7

4 (Fig. 5) IC2, IC4 IC6

5 (Fig. 5) IC8 IC7 IC2
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CONCLUSIONS

We have employed ICA to detect the co-occurrence
of multiple CJD-related patterns from the EEG
recording for aiding to the early diagnosis. Results
demonstrate that ICA is an effective tool for simulta-
neously recovering the FIRDA, PLEDs, and triphasic
waves (early PSWCs) that can be hardly discerned by
visual inspection from the contaminated EEG record-
ings. The concurrent appearance of FIRDA and
PLEDs or triphasic waves from the same EEG data
suggests that the heterogeneity of EEG in the early
diagnosis of CJD should be taken into account.
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